Two New Benzofuran Derivatives from Ligularia stenocephala

Fu Lin YAN, Ai Xia WANG, Zhong Jian JIA*

College of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new benzofuran derivatives were isolated from the roots of *Ligularia stenocephala*. Their structures were established by spectroscopic methods and 2D NMR experiments.

Keywords: Ligularia stenocephala, Compositae, benzofuran derivative.

Previously, we reported the structures of three new isopropenyl benzofuran-type polymers from Ligularia stenocephala1. Here, we report the structures of two new benzofuran derivatives isolated from this plant and named as stenocephalain D (1) and E (2).

Compound **1**, colorless crystals, mp 66-68 . Its HREIMS showed [M+H]⁺ at m/z 469.1837 (calcd. 469.1857), corresponding to the molecular formula $C_{26}H_{28}O_8$. The IR bands (1752, 1710, 1681, 1605, 1511, 1488 cm⁻¹) and UV absorptions (241.6, 281.0, 320.0 nm), exhibited the presence of benzofuran ring and carbonyl group. The ¹H and ¹³CNMR data of compound **1** showed four methoxyl groups (δ_H 3.67, 3.90, 3.91, 3.93), one aldehyde group (δ_H 10.03), two geminal methyl groups (δ_H 1.47) and a terminal double bond (δ_H 5.21, 5.92). Four single peaks of proton (δ_H 7.01, 6.94, 7.32, 6.38) exhibited that they were in 1,4-relationship of benzene rings respectively. In the HMBC spectrum of compound **1**, the long-range correlations of H-1, H-3 and H-3' with C-2'; H-3, H-6 and H-7 with C-4 were shown respectively. Thus, the structure of compound **1** was confirm- ed and named as stenocephalain D.

Compound **2**, yellow crystals, mp 70-72 . The molecular formula was deduced as $C_{26}H_{28}O_6$ from its HREIMS [M+NH₄]⁺ at m/z 454.2232 (calcd. 454.2224). The IR

.

^{*} E-mail:jiazj@lzu.edu.cn

spectrum (1621, 1486 and 1456 cm $^{-1}$) and UV (328.2 nm) verified the presence of benzo-furan ring. The 1 H and 13 CNMR data of compound **2** showed three methyl groups (δ_{H} 1.70, 1.61 and 1.61), four methoxyl groups (δ_{H} 3.87, 3.90, 3.91, 3.92) and a double bond proton (δ_{H} 6.50). In the HMBC spectrum of **2**, the long-range correlations of H-1, H-3 and H-3' with C-2'; H-3, H-5, H-6 and H-3" with C-2" were obviously shown respectively. Therefore, the structure of compound **2** was determined and named as stenocephalain E.

Table 1 $\,^{1}$ HNMR (300 MHz) , 13 CNMR (75 MHz) , DEPT and HMBC data of 1 and 2

		1				2	
No.	δ_{H}	$\delta_{\rm C}$	HMBC	No.	δ_{H}	$\delta_{\rm C}$	HMBC
1	5.20 s 5.92 s	115.4 t	C-2,3,2'	1	1.70 s	13.2 q	C-2,3,2'
2		133.6 s		2		126.1 s	
3	2.90 s	42.7 t	C-1,2,4,5,6,7,2'	3	6.50 s	133.2 d	C-1,2,4,5 6,2',2"
4		43.6 s		4		37.4 s	
5		175.8 s		5	1.61 s	29.2 s	C-3,4,6,2"
6	1.47 s	25.6 q	C-3,4,5,7	6	1.61 s	29.2 s	C-3,4,5,2"
7	1.47 s	25.6 q	C-3,4,5,6	2'		157.4 s	
2'		155.8 s		3'	6.46 s	102.2 d	C-2',4',8',9'
3'	6.66 s	103.8 d	C-2,2',4',8',9'	4'	6.95 s	101.1 d	C-3',5',6'
							7',8',9'
4'	6.94 s	102.4 d	C-3',5',6',8',9'	5'		146.3° s	
5'		146.7 s		6'		146.3° s	
6'		148.5 s		7'	7.04 s	95.1 d	C-5',6',8',9'
7'	7.01 s	95.1 d	C-5',6',8',9'	8'		149.3 s	
8'		149.6 s		9'		121.0 s	
9'		120.7 s		10'	3.87 s	56.2 ^b q	C-5'
10'	$3.90^{a} s$	56.0° s	C-5'	11'	$3.90^{a} s$	56.3 ^b q	C-6'
11'	$3.93^{a} s$	56.4 ^a s	C-6'	2"		164.2 s	
1"		154.7 s		3"	6.42 s	100.7 d	C-2",4",8",9"
2"	7.32 s	109.0 d	C-1",3"	4"	6.98 s	101.9 d	C-3",5",6",7"8",9"
3"		120.6 s		5"		147.2° s	
4"		147.2 s		6"		147.9 ^a s	
5"	6.38 s	105.8 d	C-4",6"	7"	7.04 s	95.5 d	C-5",6",8",9"
6"		148.5 s		8"		149.3 s	
7"	10.03 s	186.6 d	C-2",3"	9"		120.4 s	
8"	3.91 ^a s	56.2a s	C-4"	10"	3.91 ^a s	56.3 ^b q	C-5"
9"	3.67 s	56.3ª s	C-1",6"	11"	3.92 ^a s	56.5 ^b q	C-6"

^{a,b}. Assignments in the vertical column with the same sign may be alternated although those given here are preferred

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 29972017).

References

1. F. L. Yan, A. X. Wang, Z. J. Jia, Chin. Chem. Lett., 2003 (accepted).

Received 29 April, 2003